Local pH elevation mediated by the intrabacterial urease of Helicobacter pylori cocultured with gastric cells.
نویسندگان
چکیده
Helicobacter pylori resists gastric acidity by modulating the proton-gated urea channel UreI, allowing for pH(out)-dependent regulation of urea access to intrabacterial urease. We employed pH- and Ca(2+)-sensitive fluorescent dyes and confocal microscopy to determine the location, rate, and magnitude of pH changes in an H. pylori-AGS cell coculture model, comparing wild-type bacteria with nonpolar ureI-deletion strains (ureI-ve). Addition of urea at pH 5.5 to the coculture resulted first in elevation of bacterial periplasmic pH, followed by an increase of medium pH and then pH in AGS cells. No change in periplasmic pH occurred in ureI-deletion mutants, which also induced a slower increase in the pH of the medium. Pretreatment of the mutant bacteria with the detergent C(12)E(8) before adding urea resulted in rapid elevation of bacterial cytoplasmic pH and medium pH. UreI-dependent NH(3) generation by intrabacterial urease buffers the bacterial periplasm, enabling acid resistance at the low urea concentrations found in gastric juice. Perfusion of AGS cells with urea-containing medium from coculture at pH 5.5 did not elevate pH(in) or [Ca(2+)](in), unless the conditioned medium was first neutralized to elevate the NH(3)/NH(4)(+) ratio. Therefore, cellular effects of intrabacterial ammonia generation under acidic conditions are indirect and not through a type IV secretory complex. The pH(in) and [Ca(2+)](in) elevation that causes the NH(3)/NH(4)(+) ratio to increase after neutralization of infected gastric juice may contribute to the gastritis seen with H. pylori infection.
منابع مشابه
Acid acclimation by Helicobacter pylori.
Helicobacter pylori is a Gram-negative neutralophile associated with peptic ulcers and gastric cancer. It has a unique ability to colonize the human stomach by acid acclimation. It uses the pH-gated urea channel, UreI, to enhance urea access to intrabacterial urease and a membrane-anchored periplasmic carbonic anhydrase to regulate periplasmic pH to approximately 6.1 in acidic media, whereas ot...
متن کاملHelicobacter pylori impedes acid-induced tightening of gastric epithelial junctions.
Gastric infection by Helicobacter pylori is the most common cause of ulcer disease and gastric cancer. The mechanism of progression from gastritis and inflammation to ulcers and cancer in a fraction of those infected is not definitively known. Significant acidity is unique to the gastric environment and is required for ulcer development. The interplay between gastric acidity and H. pylori patho...
متن کاملThe Periplasmic -Carbonic Anhydrase Activity of Helicobacter pylori Is Essential for Acid Acclimation
The role of the periplasmic -carbonic anhydrase ( -CA) (HP1186) in acid acclimation of Helicobacter pylori was investigated. Urease and urea influx through UreI have been shown to be essential for gastric colonization and for acid survival in vitro. Intrabacterial urease generation of NH3 has a major role in regulation of periplasmic pH and inner membrane potential under acidic conditions, allo...
متن کاملThe periplasmic alpha-carbonic anhydrase activity of Helicobacter pylori is essential for acid acclimation.
The role of the periplasmic alpha-carbonic anhydrase (alpha-CA) (HP1186) in acid acclimation of Helicobacter pylori was investigated. Urease and urea influx through UreI have been shown to be essential for gastric colonization and for acid survival in vitro. Intrabacterial urease generation of NH3 has a major role in regulation of periplasmic pH and inner membrane potential under acidic conditi...
متن کاملInteractions among the seven Helicobacter pylori proteins encoded by the urease gene cluster.
Survival of Helicobacter pylori in acid depends on intrabacterial urease. This urease is a Ni(2+)-containing oligomeric heterodimer. Regulation of its activity and assembly is important for gastric habitation by this neutralophile. The gene complex encodes catalytic subunits (ureA/B), an acid-gated urea channel (ureI), and accessory assembly proteins (ureE-H). With the use of yeast two-hybrid a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of clinical investigation
دوره 106 3 شماره
صفحات -
تاریخ انتشار 2000